

RFCS i²Mon User Workshop WP2: Satellite Radar Remote Sensing

Dr. Chia-Hsiang Yang Ing. Carsten Stemmler Dr. Kian Pakzad Dr. Andreas Müterthies

ARBUS Dr. Christin Lubitz Dr. Oliver Lang

7th December 2021

Content

Topic	Speaker
Introduction	EFTAS
Open-pit mine with Sentinel-1	EFTAS
Open-pit mine with TerraSAR-X	AIRBUS
Underground mine with Sentinel-1	EFTAS
Conclusion	EFTAS

To prevent catastrophes

Brumadinho dam failure (January 2019)

https://en.wikipedia.org/wiki/Brumadinho_dam_disaster

Mariana dam failure (November 2015)

WP2 - Satellite Radar Remote Sensing

- 1. Study on Suitable Remote Monitoring Data, Systems and Processing Technology
- 2. Development of Monitoring Data Acquisition and Processing Systems
- 3. Refinements and Final Development of the Monitoring System

Content

Topic	Speaker
Introduction	EFTAS
Open-pit mine with Sentinel-1	EFTAS
Open-pit mine with TerraSAR-X	AIRBUS
Underground mine with Sentinel-1	EFTAS
Conclusion	EFTAS

Sentinel-1 Dataset

Mode	IW										
Resolution	4.2 m × 13.9 m		•••••	•••••••	•••••	••••••	••••••	••••	••••••	•••	
Amount	71		3/2018 5/	/2018 7/2	2018 9/2	2018 11/	2018 1/2	2019 3/2	2019 5/2	2019	
Orbit	Ascending		Time Span 17.03.2018 – 2		- 17.04	5.201	19				
Polarization	VV				- 17.00						

Test in Cottbus

Test in Cottbus

European Commission

RFCS i2MON User Workshop

Cumulative Vertical Movement

Instantaneous Vertical Velocity

Instantaneous Vertical Acceleration

Content

Topic	Speaker
Introduction	EFTAS
Open-pit mine with Sentinel-1	EFTAS
Open-pit mine with TerraSAR-X	AIRBUS
Underground mine with Sentinel-1	EFTAS
Conclusion	EFTAS

DEFENCE AND SPACE

i2Mon - Integrated Mining Impact Monitoring

High Resolution TerraSAR-X Surface Movement Monitoring (LEAG Test Site)

Dr. Christin Lubitz User Workshop, 07.12.2021

Precise long-term monitoring via SAR satellites

- Interferometric Synthetic Aperture Radar (InSAR) technique
- Movements are indicated by a path length difference
- The Measurement direction is along the line of sight (LOS) of satellite \rightarrow i.e. both vertical & horizontal movement components contribute to the measurements
 - \rightarrow No sensitivity to horizontal displacements in flight direction \rightarrow Small incidence angle \rightarrow Low sensitivity for movements in East-West

A time series analysis is possible only for pixels that do not change . their reflect characteristics during the measurement period

Jeasurement Pixel

No Measurement

AIRBUS

Test site Cottbus-Nord

- LEAG test site "Cottbus-Nord" or "Cottbuser Ostsee"
- Sensor: TerraSAR-X
- Mode: Stripmap (SM)
- Spatial Resolution: ~ 3 m
- Image size: 30 km x 50 km
- One acquisition geometry: Ascending
- Reference Points: B169/Thiemstr.

Aquisition Specification	Ascending Orbit	•
Orbit number	70	m
Incidence angle	21.1°	n 🕨
First acquisition	12.07.2016 (1)	• Lo for
Latest acquisition	21.11.2021 (166)	
Repeat cycle	11 - 22 days	

Test site Cottbus-Nord – High Resolution TerraSAR-X InSAR Analysis

- Initial Analysis: 20/03/2018 12/05/2019
 → 1 year 2 months
 - \rightarrow 1 year 2 months
- 36 Scenes, SBAS Method applied

AIRBUS

Test site Cottbus-Nord – High Resolution TerraSAR-X InSAR Analysis

DEFENCE AND SPACE

Test site Cottbus-Nord – North Restricted Area

Inlet Structure and Outlet Structure (in construction) \rightarrow Note: The outlet structure will be built before the end of the flooding process!!!

Confidential

AIRBUS

TerraSAR-X vs. Levelling

- HFP Bewegungsnivellement Jänschwalde/Cottbus
- North-West
- Mean RMSE: 1,06 mm

TerraSAR-X vs. Levelling

- Several locations were investigated for validation
- Overall Mean RMSE: 2,3 mm •

	Mean RMSE	1,06
Leitniv	2,32	1 2.32
Verbniv	2,34	
Kippenniv	2,70	
Bewegniv (NW)	1,06	
Bewegniv (NE)	3,43	
Bewegniv (SW)	2,10	2,70
Bewegniv (SE)	1,53	
Г		2,10
L	_egend	
	් Vertex Test Area	
Priority Areas		
Hazard Areas		
Mining Law Responsibility		1,53
Safety Line		

Confidential

AIRBUS

DEFENCE AND SPACE

Corner Reflectors

- Nov. 2020: Detailed planning of the installation locations
- CR design by RAG AG, CR construction by LEAG AG
- Dec. 2020 Jun. 2021: CR installation

AIRBUS

Advantages of Surface Movement Monitoring from Space

- + **Precision**: Measurement in millimetre range
- Flexible: High revisit frequency of TerraSAR-X/PAZ constellation allows monitoring of high dynamic processes; optimum satellite tasking
- Valuable: Large coverage and high density of measurement points allows analysis of spatially complex and small-scale deformations
- Efficient: Remotely sensed input data from space minimizing costs and risks in particular for on-site staff

Contact:

Dr. Christin Lubitz Airbus Defence and Space

T +49 331 200 29 244 E ITD-SMM@airbus.com

www.intelligence-airbusds.com

Thank you

This document and all information contained herein is the sole property of Airbus. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the expressed written consent of Airbus. This document and its content shall not be used for any purpose other than that for which it is supplied. Airbus, it's logo and product names are registered trademarks.

Comparison between Sentinel-1 and TerraSAR-X

	Sentinel-1	TerraSAR-X				
Wavelength	~ 5.55 cm	~ 3.11 cm				
Polarization	VV	нн				
Orbit	Ascending	Ascending				
Time Span	17.03.2018 – 17.05.2019	20.03.2018 - 12.05.2019				
Ground Size	~ 4.2 m × 13.9 m	~ 3 m × 3 m				
Repeat Cycle	6 days	11 days				
Number of Scenes	71 36					
Resampled Time Span	20.03.2018 – 12.05.2019					
Resampled Ground Size	~ 30 m × 30 m					

6 CRs deployed since June 2021

0

Content

Торіс	Speaker
Introduction	EFTAS
Open-pit mine with Sentinel-1	EFTAS
Open-pit mine with TerraSAR-X	AIRBUS
Underground mine with Sentinel-1	EFTAS
Conclusion	EFTAS

Underground Mining in Poland (PGG) since June 2021

0

Sentinel-1 Dataset

Zabrze	Bytom	Dabrowa Gornicza		Jan Sta					
Cliwice	Chorzow Sosnov Katowice	viec	Slawków Olkusz Bokowno	Sułoszov	Orbit	Amount	Mode	Polarization	Resolution
Knurów	Diaska	Myslowice Jaworzno			Descending	50	IW	VV	5 m × 15 m
Czerwionka-Leszczyny Laziska (Mi, olow Gorne		Titžebinia	2eszowice	Ascending	51	1.	•••	5 m × 15 m
	Tychy		, C irzanow		•••••		• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••
Żory	Kobior	Oswecim	Alwerna		•• •••••	•••••	••••	•••••	Descending Ascending
Pawłowice	25202VID3	Brzeszcze	a zalor		01.2912 02.2912	08.2022	2 ²⁹²¹ 01.	St. 69.2911 10	51
ebie-Zdroj Google Earth	Goczałkowice-Zdrój	Osiek	20	km					

Vertical Movement

MÔN

RFCS RESEARCH PROJECT

Point-based Cumulative Vertical Movement

Point-based Instantaneous Vertical Velocity

East-west Movement

Point-based Cumulative East-West Movement

Point-based Instantaneous East-West Velocity

Movement Significance

MÔN

RFCS RESEARCH PROJECT

Content

Topic	Speaker
Introduction	EFTAS
Open-pit mine with Sentinel-1	EFTAS
Open-pit mine with TerraSAR-X	AIRBUS
Underground mine with Sentinel-1	EFTAS
Conclusion	EFTAS

Combined Usage: Overview & Hotspot Monitoring Solution

Sentinel-1	TerraSAR-X
Costless	Commercial
Media Resolution	High Resolution
Less Sensitive	Sensitive
to Small Movement	to Small Movement
Repeat Cycle 6 days	Repeat Cycle 11 days

