

Assimilation of monitoring data to improve slope reliability

WP4: Monitoring Data Analysis and Modelling

Muhammad Mohsan, Femke C. Vossepoel, Philip J. Vardon

Department of Geoscience and Engineering, Delft University of Technology, Netherlands

□ Introduction

Data assimilation

□ Case 1:What sort of constitutive models we should use?

□ Case 2: What sort of data assimilation technique we should use?

□ Results and discussion (parameter estimation, FoS estimation)

Conclusions

Introduction

To apply data assimilation in a slope stability system

- 1. What sort of constitutive models we should use?
- 2. What sort of data assimilation techniques we should use?

Case 1:What sort of constitutive models we should use?

- 1. Numerical model : Finite element method
 - a. Mohr-Coulomb (MC) model
 - b. Hardening soil (HS) model
- 2. Data assimilation scheme : (Recursive) ensemble Kalman filter
 - a. To estimate the strength and stiffness parameters based on

synthetic observations of slope deformation.

Fluctuation of the water level (Dw) in CD. The red arrows represent the assimilation times.

points.

Numerical model: FEM: Constitutive models

A set of mathematical equations which represents stress-strain behaviour in a given material is called the constitutive model.

HS model

$$E_{50} = f(c, \varphi, \sigma_3)$$

Numerical model: FEM: Constitutive models

A set of mathematical equations which represents stress-strain behaviour in a given material is called the constitutive model.

Close-to-failureFar-from-failure

Mohr-Coulomb (MC) model

Hardening soil (HS) model

-Estimation of friction angle (ϕ ') based on the slope deformation observations

Estimation of friction angle for the MC and HS soil models at t=1000 and t=2000 days

Estimation of friction angle for the MC and HS soil models at t=1000 and t=2000 days

Estimation of friction angle for the MC and HS soil models at t=1000 and t=2000 days

*T***U**Delft

Estimation of friction angle for the MC and HS soil models at t=1000 and t=2000 days

*f***U**Delft

TUDelft

TUDelft

 $\underbrace{\underbrace{E}}_{0}^{14} \underbrace{\underbrace{I}_{0}}_{0} \underbrace{I}_{0}^{14} \underbrace{I}_{0}^$

TUDelft

14

Mohsan, M., Vardon, P. J., & Vossepoel, F. C. (2021). On the use of different constitutive models in data assimilation for slope stability. Computers and Geotechnics, 138, [104332]. <u>https://doi.org/10.1016/j.compgeo.2021.104332</u>

ŤUDelft

Case 2: What sort of data assimilation we should use?

- 1. Numerical model : Finite element method
 - a. Mohr-Coulomb (MC) model
 - b. Hardening soil (HS) model
- 2. Data assimilation scheme :
 - a. (Recursive) ensemble Kalman filter
 - b. Ensemble smoother

Data assimilation techniques

Ensemble Kalman filter (EnKF)

Ensemble smoother (ES)

-Estimation of friction angle (ϕ ') based on the slope deformation observations

Estimation of friction angle by EnKF and ES at 6th time step

*f***U**Delft

Estimation of friction angle by EnKF and ES at 6th time step

*f***U**Delft

TUDelft

Factor of safety estimation by EnKF and ES at 6th time step by true, prior and estimated parameters

27

TUDelft

Factor of safety estimation by EnKF and ES at 6th time step by true, prior and estimated parameters

28

Conclusions

□ Data assimilation provides a promising estimate of parameters and factor of safety.

- ☐ The use of a Mohr-Coulomb (MC) constitutive model in data assimilation <u>does not</u> <u>always</u> output a reliable factor of safety estimation.
- □ However, the hardening soil (HS) model is able to yields a reliable factor of safety estimation using data assimilation under different loading conditions (close-to-failure, far-from-failure).
- □ Ensemble Kalman filter (EnKF) provides better results than ensemble smoother (ES).

Thank you for listening!

References

• Tandeo, P., Ailliot, P., Bocquet, M., Carrassi, A., Miyoshi, T., Pulido, M., & Zhen, Y. (2020). A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation. *Monthly Weather Review*, *148*(10), 3973-3994.

Appendix

Synthetic problem

7 obs. points

Slope geometry

TUDelft

Displacement estimation

Ensemble prediction of the horizontal displacement at point A of the slope

TUDelft

Twin experiment

Data Assimilation: Ensemble Kalman filter (EnKF)

$$\boldsymbol{y} = g(\boldsymbol{z}), \quad \boldsymbol{z} = \begin{pmatrix} \boldsymbol{x} & \boldsymbol{\theta} \end{pmatrix}^{\mathrm{T}}$$

Bayes's theorem:

$$\begin{aligned} f(\boldsymbol{z}, \boldsymbol{y} | \boldsymbol{d}) &\propto f(\boldsymbol{d} | \boldsymbol{y}) f(\boldsymbol{y} | \boldsymbol{z}) f(\boldsymbol{z}) & J \\ f(\boldsymbol{z} | \boldsymbol{d}) &\propto \exp\{-\frac{1}{2}J\} \end{aligned}$$

In EnKF:

elft

$$\Rightarrow \boldsymbol{z}_i^{\mathrm{a}} = \boldsymbol{z}_i^{\mathrm{f}} + \mathbf{K}^e(\boldsymbol{d}_i - \boldsymbol{g}(\boldsymbol{z}_i^{\mathrm{f}}))$$

$$\Rightarrow \mathbf{K}^{e} = \mathbf{C}^{e}_{zz} \mathbf{G} (\mathbf{G} \mathbf{C}^{e}_{zz} \mathbf{G}^{\mathrm{T}} - \mathbf{C}_{dd})^{-1}$$

$$y$$
: model output vector at measurement location

- g: state vector
- z: state-parameter vector
- x: state vector
- θ : parameter vector
- J: cost function
- d: measurement vector

$$oldsymbol{z} = egin{pmatrix} x & heta \end{pmatrix}^{\mathrm{T}}$$

- z: state-parameter vector
- x: state vector
- $\pmb{\theta}:$ parameter vector

$$\boldsymbol{z}_i^{\mathrm{a}} = \boldsymbol{z}_i^{\mathrm{f}} + \mathbf{K}^e(\boldsymbol{d}_i - g(\boldsymbol{z}_i^{\mathrm{f}}))$$

$$\mathbf{K}^{e} = \mathbf{C}^{e}_{\boldsymbol{z}\boldsymbol{z}} \mathbf{G} (\mathbf{G} \mathbf{C}^{e}_{\boldsymbol{z}\boldsymbol{z}} \mathbf{G}^{\mathrm{T}} - \mathbf{C}_{\boldsymbol{d}\boldsymbol{d}})^{-1}$$

Constitutive models

A set of mathematical equations which represents stress-strain behaviour in a given material is called the constitutive model.

Mohr-Coulomb (MC) model

Hardening soil (HS) model

Constitutive models

A set of mathematical equations which represents stress-strain behaviour in a given material is called the constitutive model.

Close-to-failureFar-from-failure

Mohr-Coulomb (MC) model

Hardening soil (HS) model

Results and Discussion

Delft

Estimation of stiffness for the MC and HS soil models at t=1000 and t=2000 days

Estimation of friction angle for the MC and HS soil models at t=1000 and t=2000 days

Results and discussion

-Parameter (stiffness and strength) estimation

Results and discussion

-Parameter (stiffness and strength) estimation

